Saturday, August 29, 2009

Scale

Scale

Networks are often classified as Local Area Network (LAN), Wide Area Network (WAN), Metropolitan Area Network (MAN), Personal Area Network (PAN), Virtual Private Network (VPN), Campus Area Network (CAN), Storage Area Network (SAN), etc. depending on their scale, scope and purpose. Usage, trust levels and access rights often differ between these types of network - for example, LANs tend to be designed for internal use by an organization's internal systems and employees in individual physical locations (such as a building), while WANs may connect physically separate parts of an organization to each other and may include connections to third parties

Tuesday, August 18, 2009

Decentralized computing

Decentralized computing is a trend in modern day business environments. This is the opposite of centralized computing, which was prevalent during the early days of computers. Decentralized computing is the allocation of resources, both hardware and software, to each individual workstation, or office location. In contrast, centralized computing exists when the majority of functions are carried out, or obtained from a remote centralized location.
A decentralized computer system has many benefits over a conventional centralized
network. Desktop computers have advanced so rapidly, that their potential performance far exceeds the requirements of most business applications. This results in most desktop computers remaining idle (in relation to their full potential). A decentralized system can utilize the potential of these systems to maximize efficiency. However, it is debatable whether these networks increase overall effectiveness.
All computers have to be updated individually with new software, unlike a centralised computer system. Decentralised systems still enable
file sharing and all computers can share peripherals such as printers and scanners as well as modems, allowing all the computers in the network to connect to the internet.
A collection of decentralized computers systems are components of a larger computer network, held together by local stations of equal importance and capability. These systems are capable of running independently of each other.

Peer-to-Peer
Based on a “grid model” a
peer-to-peer system, or P2P system, is a collection of applications run on several local computers, which connect remotely to each other to complete a function or a task. There is no main operating system to which satellite systems are subordinate. This approach to software development (and distribution) affords developers great savings, as they don’t have to create a central control point. An example application is LAN messenging which allows users to communicate without central server.

File sharing applications
One of the most interesting debates over decentralized computing involves
Napster, a music file sharing application, which granted users access to an enormous database of files. Record companies brought legal action against Napster, blaming the system for lost record sales. Napster was found in violation of copyright laws by distributing pirated software, and was shut down.
After the fall of Napster, there was a demand for a file sharing system that would be less vulnerable to
litigation. Gnutella, a decentralized system, was developed. This system allowed files to be queried and shared between users, without a central directory, and therefore shielded the network from law.

Conclusion
The
debate over centralized computing versus decentralized computing will continue to be hotly debated, with advocates on either side. It is unlikely that either use will become standard or predominant.

COMPUTER NETWORKING DEVICE

A full list of Computer networking devices are units that mediate data in a computer network. Computer networking devices are also called network equipment, Intermediate Systems (IS) or InterWorking Unit (IWU). Units which are the last receiver or generate data are called hosts or data terminal equipment.

List of computer networking devices
Common basic networking devices:
Gateway: device sitting at a network node for interfacing with another network that uses different protocols. Works on OSI layers 4 to 7.
Router: a specialized network device that determines the next network point to which to forward a data packet toward its destination. Unlike a gateway, it cannot interface different protocols. Works on OSI layer 3.
Bridge: a device that connects multiple network segments along the data link layer. Works on OSI layer 2.
Switch: a device that allocates traffic from one network segment to certain lines (intended destination(s)) which connect the segment to another network segment. So unlike a hub a switch splits the network traffic and sends it to different destinations rather than to all systems on the network. Works on OSI layer 2.
Hub: connects multiple Ethernet segments together making them act as a single segment. When using a hub, every attached device shares the same broadcast domain and the same collision domain. Therefore, only one computer connected to the hub is able to transmit at a time. Depending on the network topology, the hub provides a basic level 1 OSI model connection among the network objects (workstations, servers, etc). It provides bandwidth which is shared among all the objects, compared to switches, which provide a dedicated connection between individual nodes. Works on OSI layer 1.
Repeater: device to amplify or regenerate digital signals received while setting them from one part of a network into another. Works on OSI layer 1.
Some hybrid network devices:
Multilayer Switch: a switch which, in addition to switching on OSI layer 2, provides functionality at higher protocol layers.
Protocol Converter: a hardware device that converts between two different types of transmissions, such as asynchronous and synchronous transmissions.
Bridge Router(Brouter): Combine router and bridge functionality and are therefore working on OSI layers 2 and 3.
Digital media receiver: Connects a computer network to a home theatre
Hardware or software components that typically sit on the connection point of different networks, e.g. between an internal network and an external network:
Proxy: computer network service which allows clients to make indirect network connections to other network services
Firewall: a piece of hardware or software put on the network to prevent some communications forbidden by the network policy
Network Address Translator: network service provide as hardware or software that converts internal to external network addresses and vice versa
Other hardware for establishing networks or dial-up connections:
Multiplexer: device that combines several electrical signals into a single signal
Network Card: a piece of computer hardware to allow the attached computer to communicate by network
Modem: device that modulates an analog "carrier" signal (such as sound), to encode digital information, and that also demodulates such a carrier signal to decode the transmitted information, as a computer communicating with another computer over the telephone network
ISDN terminal adapter (TA): a specialized gateway for ISDN
Line Driver: a device to increase transmission distance by amplifying the signal. Base-band networks only.

Computer networking

Network cards such as this one can transmit and receive data at high rates over various types of network cables. This card is a 'Combo' card which supports three cabling standards.
This article is about computer networking, the discipline of engineering computer networks. For the article on computer networks, see
Computer network.
"Datacom" redirects here. For other uses, see
Datacom (disambiguation).
Computer networking is the
engineering discipline concerned with communication between computer systems or devices. Networking, routers, routing protocols, and networking over the public Internet have their specifications defined in documents called RFCs. Computer networking is sometimes considered a sub-discipline of telecommunications, computer science, information technology and/or computer engineering. Computer networks rely heavily upon the theoretical and practical application of these scientific and engineering disciplines. There are three types of networks: 1.Internet. 2.Intranet. 3.Extranet. A computer network is any set of computers or devices connected to each other with the ability to exchange data. Examples of different networks are:
Local area network (LAN), which is usually a small network constrained to a small geographic area.
Wide area network (WAN) that is usually a larger network that covers a large geographic area.
Wireless LANs and WANs (WLAN & WWAN) are the wireless equivalent of the LAN and WAN.
All networks are interconnected to allow communication with a variety of different kinds of media, including
twisted-pair copper wire cable, coaxial cable, optical fiber, power lines and various wireless technologies. The devices can be separated by a few meters (e.g. via Bluetooth) or nearly unlimited distances (e.g. via the interconnections of the Internet.

Views of networks
Users and network administrators often have different views of their networks. Often, users share printers and some servers form a workgroup, which usually means they are in the same geographic location and are on the same LAN. A
community of interest has less of a connotation of being in a local area, and should be thought of as a set of arbitrarily located users who share a set of servers, and possibly also communicate via peer-to-peer technologies.
Network administrators see networks from both physical and logical perspectives. The physical perspective involves geographic locations, physical cabling, and the network elements (e.g.,
routers, bridges and application layer gateways that interconnect the physical media. Logical networks, called, in the TCP/IP architecture, subnets, map onto one or more physical media. For example, a common practice in a campus of buildings is to make a set of LAN cables in each building appear to be a common subnet, using virtual LAN (VLAN) technology.
Both users and administrators will be aware, to varying extents, of the trust and scope characteristics of a network. Again using TCP/IP architectural terminology, an
intranet is a community of interest under private administration usually by an enterprise, and is only accessible by authorized users (e.g. employees). Intranets do not have to be connected to the Internet, but generally have a limited connection. An extranet is an extension of an intranet that allows secure communications to users outside of the intranet (e.g. business partners, customers).
Informally, the Internet is the set of users, enterprises,and content providers that are interconnected by
Internet Service Providers (ISP). From an engineering standpoint, the Internet is the set of subnets, and aggregates of subnets, which share the registered IP address space and exchange information about the reachability of those IP addresses using the Border Gateway Protocol. Typically, the human-readable names of servers are translated to IP addresses, transparently to users, via the directory function of the Domain Name System (DNS).
Over the Internet, there can be
business-to-business (B2B), business-to-consumer (B2C) and consumer-to-consumer (C2C) communications. Especially when money or sensitive information is exchanged, the communications are apt to be secured by some form of communications security mechanism. Intranets and extranets can be securely superimposed onto the Internet, without any access by general Internet users, using secure Virtual Private Network (VPN) technology.
When used for gaming one computer will have to be the server while the others play through it.

History
Before the advent of computer networks that were based upon some type of
telecommunications system, communication between calculation machines and early computers was performed by human users by carrying instructions between them. Many of the social behavior seen in today's Internet was demonstrably present in nineteenth-century telegraph networks, and arguably in even earlier networks using visual signals.
In September 1940
George Stibitz used a teletype machine to send instructions for a problem set from his Model K at Dartmouth College in New Hampshire to his Complex Number Calculator in New York and received results back by the same means. Linking output systems like teletypes to computers was an interest at the Advanced Research Projects Agency (ARPA) when, in 1962, J.C.R. Licklider was hired and developed a working group he called the "Intergalactic Network", a precursor to the ARPANet.
In 1964, researchers at Dartmouth developed the
Dartmouth Time Sharing System for distributed users of large computer systems. The same year, at MIT, a research group supported by General Electric and Bell Labs used a computer (DEC's PDP-8) to route and manage telephone connections.
Throughout the 1960s
Leonard Kleinrock, Paul Baran and Donald Davies independently conceptualized and developed network systems which used datagrams or packets that could be used in a packet switched network between computer systems.
1965 Thomas Merrill and Lawrence G. Roberts created the first wide area network(WAN).
The first widely used PSTN switch that used true computer control was the Western Electric
1ESS switch, introduced in 1965.
In 1969 the
University of California at Los Angeles, SRI (in Stanford), University of California at Santa Barbara, and the University of Utah were connected as the beginning of the ARPANet network using 50 kbit/s circuits. Commercial services using X.25 were deployed in 1972, and later used as an underlying infrastructure for expanding TCP/IP networks.
Computer networks, and the technologies needed to connect and communicate through and between them, continue to drive
computer hardware, software, and peripherals industries. This expansion is mirrored by growth in the numbers and types of users of networks from the researcher to the home user.
Today, computer networks are the core of modern communication. For example, all modern aspects of the
Public Switched Telephone Network (PSTN) are computer-controlled, and telephony increasingly runs over the Internet Protocol, although not necessarily the public Internet. The scope of communication has increased significantly in the past decade and this boom in communications would not have been possible without the progressively advancing computer network.

Networking methods
Networking is a complex part of computing that makes up most of the IT Industry. Without networks, almost all communication in the world would cease to happen. It is because of networking that telephones, televisions, the internet, etc. work.
One way to categorize computer networks is by their geographic scope, although many real-world networks interconnect
Local Area Networks (LAN) via Wide Area Networks (WAN)and wireless networks[WWAN]. These three (broad) types are:

Local area network (LAN)
A local area network is a network that spans a relatively small space and provides services to a small number of people.
A peer-to-peer or client-server method of networking may be used. A peer-to-peer network is where each client shares their resources with other workstations in the network. Examples of peer-to-peer networks are: Small office networks where resource use is minimal and a home network. A client-server network is where every client is connected to the server and each other. Client-server networks use servers in different capacities. These can be classified into two types:
1. Single-service servers
2. print server,
where the server performs one task such as file server, ; while other servers can not only perform in the capacity of file servers and print servers, but they also conduct calculations and use these to provide information to clients (Web/Intranet Server). Computers may be connected in many different ways, including Ethernet cables, Wireless networks, or other types of wires such as power lines or phone lines.
The
ITU-T G.hn standard is an example of a technology that provides high-speed (up to 1 Gbit/s) local area networking over existing home wiring (power lines, phone lines and coaxial cables).

Wide area network (WAN)
A wide area network is a network where a wide variety of resources are deployed across a large domestic area or internationally. An example of this is a multinational business that uses a WAN to interconnect their offices in different countries. The largest and best example of a WAN is the
Internet, which is a network composed of many smaller networks. The Internet is considered the largest network in the world. The PSTN (Public Switched Telephone Network) also is an extremely large network that is converging to use Internet technologies, although not necessarily through the public Internet.
A Wide Area Network involves communication through the use of a wide range of different technologies. These technologies include
Point-to-Point WANs such as Point-to-Point Protocol (PPP) and High-Level Data Link Control (HDLC), Frame Relay, ATM (Asynchronous Transfer Mode) and Sonet (Synchronous Optical Network). The difference between the WAN technologies is based on the switching capabilities they perform and the speed at which sending and receiving bits of information (data) occur.

Metropolitan Area Network (MAN)
A metropolitan network is a network that is too large for even the largest of LAN's but is not on the scale of a WAN. It also integrates two or more LAN networks over a specific geographical area ( usually a city ) so as to increase the network and the flow of communications. The LAN's in question would usually be connected via "backbone" lines.
For more information on
WANs, see Frame Relay, ATM and Sonet.

Wireless networks (WLAN, WWAN)
A wireless network is basically the same as a LAN or a WAN but there are no wires between hosts and servers. The data is transferred over sets of radio transceivers. These types of networks are beneficial when it is too costly or inconvenient to run the necessary cables. For more information, see
Wireless LAN and Wireless wide area network. The media access protocols for LANs come from the IEEE.
The most common
IEEE 802.11 WLANs cover, depending on antennas, ranges from hundreds of meters to a few kilometers. For larger areas, either communications satellites of various types, cellular radio, or wireless local loop (IEEE 802.16) all have advantages and disadvantages. Depending on the type of mobility needed, the relevant standards may come from the IETF or the ITU.

Network topology
The
network topology defines the way in which computers, printers, and other devices are connected, physically and logically. A network topology describes the layout of the wire and devices as well as the paths used by data transmissions.
Network topology has two types:
Physical
logical
Commonly used topologies include:
Bus
Star
Tree (hierarchical)
Linear
Ring
Mesh
partially connected
fully connected (sometimes known as fully redundant)
The network topologies mentioned above are only a general representation of the kinds of topologies used in computer network and are considered basic topologies.

OSI Model
Behind the scene networking is defined by the standard of
OSI (Open Systems Interconnection) reference for communications. The OSI model consists of seven layers. Each layer has its own function. The OSI model layers are Application, Presentation, Session, Transport, Network, Data Link, and Physical. The upper layers (Application, Presentation, Session) of the OSI model concentrate on the application while the lower layers (transport, network, data link, and physical) focus on signal flow of data from origin to destination. The Application layer defines the medium that communications software and any applications need to communicate to other computers. Layer 6 which is the presentation layer focuses on defining data formats such as text, jpeg, gif, and binary. An example of this layer would be displaying a picture that was received in an e-mail. The 5th Layer is the session layer which establishes how to start, control, and end links or conversations. The transport layer includes protocols that allow it to provide functions in many different areas such as: error recovery, segmentation, and reassembly. The network layers primary job is the end to end delivery of data packets. To do this, the network layer relies on logical addressing so that the origin and destination point can both be recognized. An example of this would be, ip running in a router’s job is to examine the destination address, compare the address to the ip routing table, separate the packet into smaller chunks for transporting purposes, and then deliver the packet to the correct receiver. Layer 2 is the data link layer, which sets the standards for data being delivered across a link or medium. The 1st layer is the physical layer which deals with the physical characteristics of the transmission of data such as the network card and network cable type. An easy way to remember the layers of OSI is to remember All People Seem To Need Data Processing (Layers 7 to 1).
Computer network diagram

A sample network diagram
A computer network diagram is a
schematic depicting the nodes and connections amongst nodes in a computer network or, more generally, any telecommunications network.

Symbolization
Readily identifiable icons are used to depict common network appliances e.g. Router, and the style of lines between them indicate the type of connection. Clouds are used to represent networks external to the one pictured for the purposes of depicting connections between internal and external devices, without indicating the specifics of the outside network. For example, in the hypothetical
local area network pictured to the right, three personal computers and a server are connected to a switch; the server is further connected to a printer and a gateway router, which is connected via a WAN link to the Internet.
Depending on whether the diagram is intended for formal or informal use, certain details may be lacking and must be determined from context. For example, the sample diagram does not indicate the physical type of connection between the PCs and the switch, but since a modern LAN is depicted,
Ethernet may be assumed. If the same style of line was used in a WAN (wide area network) diagram, however, it may indicate a different physical connection.
At different scales, diagrams may represent various levels of network granularity. At the LAN level, individual nodes may represent individual physical devices, such as
hubs or file servers, while at the WAN level, individual nodes may represent entire cities. In addition, when the scope of a diagram crosses the common LAN/MAN/WAN boundaries, representative hypothetical devices may be depicted instead of showing all actually existing nodes. For example, if a network appliance is intended to be connected through the Internet to many end-user mobile devices, only a single such device may be depicted for the purposes of showing the general relationship between the appliance and any such device.

Cisco Symbolization
Cisco uses its own brand of networking symbols. Since Cisco has a large Internet presence and designs a broad variety of network devices, its list of symbols ("Network Topology Icons") is exhaustive. As of November 28, 2006 this list can be found at http://www.cisco.com/web/about/ac50/ac47/2.html.

Topology
Main article:
Network topology
The physical network topology can be directly represented in a network diagram, as it is simply the physical graph (mathematics) represented by the diagrams, with network nodes as vertices and connections as undirected or direct edges (depending on the type of connection). The logical network topology can be inferred from the network diagram if details of the network protocols in use are also given.

CLIENT SERVER

This article does not cite any references or sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (December 2007)

Client-server computing or networking is a distributed application architecture that partitions tasks or work loads between service providers (servers) and service requesters, called clients.[1] Often clients and servers operate over a computer network on separate hardware. A server machine is a high-performance host that is running one or more server programs which share its resources with clients. A client does not share any of its resources, but requests a server's content or service function. Clients therefore initiate communication sessions with servers which await (listen to) incoming requests.

Description
Client-server describes the relationship between two computer programs in which one program, the client program, makes a service request to another, the server program. Standard networked functions such as email exchange, web access and database access, are based on the client-server model. For example, a
web browser is a client program at the user computer that may access information at any web server in the world. To check your bank account from your computer, a web browser client program in your computer forwards your request to a web server program at the bank. That program may in turn forward the request to its own database client program that sends a request to a database server at another bank computer to retrieve your account balance. The balance is returned to the bank database client, which in turn serves it back to the web browser client in your personal computer, which displays the information for you.
The client-server model has become one of the central ideas of
network computing. Many business applications being written today use the client-server model. So do the Internet's main application protocols, such as HTTP, SMTP, Telnet, DNS. In marketing, the term has been used to distinguish distributed computing by smaller dispersed computers from the "monolithic" centralized computing of mainframe computers. But this distinction has largely disappeared as mainframes and their applications have also turned to the client-server model and become part of network computing.
Each
instance of the client software can send data requests to one or more connected servers. In turn, the servers can accept these requests, process them, and return the requested information to the client. Although this concept can be applied for a variety of reasons to many different kinds of applications, the architecture remains fundamentally the same.
The most basic type of client-server
architecture employs only two types of hosts: clients and servers. This type of architecture is sometimes referred to as two-tier. It allows devices to share files and resources. The two tier architecture means that the client acts as one tier and application in combination with server acts as another tier.
The interaction between client and server is often described using
sequence diagrams. Sequence diagrams are standardized in the Unified Modeling Language.
Specific types of clients include
web browsers, email clients, and online chat clients.
Specific types of servers include
web servers, ftp servers, application servers, database servers, name servers, mail servers, file servers, print servers, and terminal servers. Most web services are also types of servers.

Comparison to peer-to-peer architecture

Please help improve this article by expanding it. Further information might be found on the talk page.
In
peer-to-peer[disambiguation needed] architectures, each host or instance of the program can simultaneously act as both a client and a server, and each has equivalent responsibilities and status.
Both client-server and peer-to-peer architectures are in wide usage today. Details may be found in
Comparison of Centralized (Client-Server) and Decentralized (Peer-to-Peer) Networking.

Comparison to client-queue-client architecture
While classic client-server architecture requires one of the communication endpoints to act as a server, which is much harder to implement,[
citation needed] Client-Queue-Client allows all endpoints to be simple clients, while the server consists of some external software, which also acts as passive queue (one software instance passes its query to another instance to queue, e.g. database, and then this other instance pulls it from database, makes a response, passes it to database etc.). This architecture allows greatly simplified software implementation. Peer-to-peer architecture was originally based on the Client-Queue-Client concept.

Advantages
In most cases, a client-server architecture enables the roles and responsibilities of a computing system to be distributed among several independent computers that are known to each other only through a network. This creates an additional advantage to this architecture: greater ease of maintenance. For example, it is possible to replace, repair, upgrade, or even relocate a server while its clients remain both unaware and unaffected by that change.
All the data is stored on the servers, which generally have far greater security controls than most clients. Servers can better control access and resources, to guarantee that only those clients with the appropriate permissions may access and change data.
Since data storage is centralized, updates to that data are far easier to administer than what would be possible under a P2P paradigm. Under a P2P architecture, data updates may need to be distributed and applied to each peer in the network, which is both time-consuming and error-prone, as there can be thousands or even millions of peers.
Many mature client-server technologies are already available which were designed to ensure security, friendliness of the user interface, and ease of use.
It functions with multiple different clients of different capabilities.

Disadvantages
Traffic congestion on the network has been an issue since the inception of the client-server paradigm. As the number of simultaneous client requests to a given server increases, the server can become overloaded. Contrast that to a P2P network, where its aggregated bandwidth actually increases as nodes are added, since the P2P network's overall bandwidth can be roughly computed as the sum of the bandwidths of every node in that network.
The client-server paradigm lacks the robustness of a good P2P network. Under client-server, should a critical server fail, clients’ requests cannot be fulfilled. In P2P networks, resources are usually distributed among many nodes. Even if one or more nodes depart and abandon a downloading file, for example, the remaining nodes should still have the data needed to complete the download

BLUETOOTH Networking


Bluetooth is an open wireless protocol for exchanging data over short distances from fixed and mobile devices, creating personal area networks (PANs). It was originally conceived as a wireless alternative to RS232 data cables. It can connect several devices, overcoming problems of synchronization.

Name and logo
The word Bluetooth is an
anglicized version of Old Norse Blátönn or Danish Blåtand, the name of the tenth-century king Harald I of Denmark, who united dissonant Danish tribes into a single kingdom. The implication is that Bluetooth does the same with communications protocols, uniting them into one universal standard.
The Bluetooth logo is a
bind rune merging the Germanic runes (Hagall) and (Berkanan).

Implementation
Bluetooth uses a radio technology called
frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 frequencies. In its basic mode, the modulation is Gaussian frequency-shift keying (GFSK). It can achieve a gross data rate of 1 Mb/s. Bluetooth provides a way to connect and exchange information between devices such as mobile phones, telephones, laptops, personal computers, printers, Global Positioning System (GPS) receivers, digital cameras, and video game consoles through a secure, globally unlicensed Industrial, Scientific and Medical (ISM) 2.4 GHz short-range radio frequency bandwidth. The Bluetooth specifications are developed and licensed by the Bluetooth Special Interest Group (SIG). The Bluetooth SIG consists of companies in the areas of telecommunication, computing, networking, and consumer electronic.

Uses
Bluetooth is a standard and a communications protocol primarily designed for low power consumption, with a short range (power-class-dependent: 1 meter, 10 meters, 100 meters) based on low-cost
transceiver microchips in each device.[5] Bluetooth makes it possible for these devices to communicate with each other when they are in range. Because the devices use a radio (broadcast) communications system, they do not have to be in line of sight of each other.
Class
Maximum Permitted Power
mW (dBm)
Range(approximate)
Class 1
100 mW (20 dBm)
~100 meters
Class 2
2.5 mW (4 dBm)
~10 meters
Class 3
1 mW (0 dBm)
~1 meter
In most cases the effective range of class 2 devices is extended if they connect to a class 1 transceiver, compared to a pure class 2 network. This is accomplished by the higher sensitivity and transmission power of Class 1 devices.
Version
Data Rate
Version 1.2
1
Mbit/s
Version 2.0 + EDR
3
Mbit/s

Bluetooth profiles
Main article:
Bluetooth profile
In order to use Bluetooth, a device must be compatible with certain Bluetooth profiles. These define the possible applications and uses of the technology.

List of applications

A typical Bluetooth mobile phone headset.
More prevalent applications of Bluetooth include:
Wireless control of and communication between a
mobile phone and a hands-free headset. This was one of the earliest applications to become popular.
Wireless networking between PCs in a confined space and where little bandwidth is required.
Wireless communication with PC input and output devices, the most common being the
mouse, keyboard and printer.
Transfer of files, contact details, calendar appointments, and reminders between devices with
OBEX.
Replacement of traditional wired
serial communications in test equipment, GPS receivers, medical equipment, bar code scanners, and traffic control devices.
For controls where
infrared was traditionally used.
For low bandwidth applications where higher [USB] bandwidth is not required and cable-free connection desired.
Sending small advertisements from Bluetooth-enabled advertising hoardings to other, discoverable, Bluetooth devices[
citation needed].
Wireless bridge between two Industrial Ethernet (e.g.,
PROFINET) networks.
Two seventh-generation
game consoles, Nintendo's Wii and Sony's PlayStation 3, use Bluetooth for their respective wireless controllers.
Dial-up internet access on personal computers or PDAs using a data-capable mobile phone as a modem.

Bluetooth vs. Wi-Fi IEEE 802.11 in networking
Bluetooth and
Wi-Fi have many applications in today's offices, homes, and on the move: setting up networks, printing, or transferring presentations and files from PDAs to computers. Both are versions of unlicensed wireless technology.
Wi-Fi is intended for resident equipment and its applications. The category of applications is outlined as WLAN, the wireless local area networks. Wi-Fi is intended as a replacement for cabling for general local area network access in work areas.
Bluetooth is intended for non resident equipment and its applications. The category of applications is outlined as the wireless
personal area network (WPAN). Bluetooth is a replacement for cabling in a variety of personally carried applications in any ambience.

Bluetooth devices

A Bluetooth USB dongle with a 100 m range.
Bluetooth exists in many products, such as telephones, the
Wii, PlayStation 3, Lego Mindstorms NXT and recently in some high definition watches[citation needed], modems and headsets. The technology is useful when transferring information between two or more devices that are near each other in low-bandwidth situations. Bluetooth is commonly used to transfer sound data with telephones (i.e., with a Bluetooth headset) or byte data with hand-held computers (transferring files).
Bluetooth protocols simplify the discovery and setup of services between devices. Bluetooth devices can advertise all of the services they provide. This makes using services easier because more of the security, network address and permission configuration can be automated than with many other network types.

Wi-Fi
Main article:
Wi-Fi
Wi-Fi is a traditional Ethernet network, and requires configuration to set up shared resources, transmit files, and to set up audio links (for example, headsets and hands-free devices). Wi-Fi uses the same radio frequencies as Bluetooth, but with higher power, resulting in a stronger connection. Wi-Fi is sometimes called "wireless Ethernet." This description is accurate, as it also provides an indication of its relative strengths and weaknesses. Wi-Fi requires more setup but is better suited for operating full-scale networks; it enables a faster connection, better range from the base station, and better security than Bluetooth.

Computer requirements

A typical Bluetooth USB dongle.

An internal notebook Bluetooth card (14×36×4 mm).
A
personal computer must have a Bluetooth adapter in order to communicate with other Bluetooth devices (such as mobile phones, mice and keyboards). While some desktop computers and most recent laptops come with a built-in Bluetooth adapter, others will require an external one in the form of a dongle.
Unlike its predecessor,
IrDA, which requires a separate adapter for each device, Bluetooth allows multiple devices to communicate with a computer over a single adapter.

Operating system support
For more details on this topic, see
Bluetooth stack.
Apple has supported Bluetooth since Mac OS X v10.2 which was released in 2002.
For Microsoft platforms, Windows XP Service Pack 2 and later releases have native support for Bluetooth. Previous versions required users to install their Bluetooth adapter's own drivers, which were not directly supported by Microsoft. Microsoft's own Bluetooth dongles (packaged with their Bluetooth computer devices) have no external drivers and thus require at least Windows XP Service Pack 2.
Linux has two popular Bluetooth stacks, BlueZ and Affix. The BlueZ stack is included with most Linux kernels and was originally developed by Qualcomm. The Affix stack was developed by Nokia. FreeBSD features Bluetooth support since its 5.0 release. NetBSD features Bluetooth support since its 4.0 release. Its Bluetooth stack has been ported to OpenBSD as well.

Mobile phone requirements
A
mobile phone that is Bluetooth enabled is able to pair with many devices. To ensure the broadest support of feature functionality together with legacy device support, the Open Mobile Terminal Platform (OMTP) forum has recently published a recommendations paper, entitled "Bluetooth Local Connectivity"; see external links below to download this paper.

Specifications and features
The Bluetooth specification was developed in 1994 by Jaap Haartsen and Sven Mattisson, who were working for
Ericsson Mobile Platforms in Lund, Sweden. The specification is based on frequency-hopping spread spectrum technology.
The specifications were formalized by the
Bluetooth Special Interest Group (SIG). The SIG was formally announced on May 20, 1998. Today it has a membership of over 11,000 companies worldwide. It was established by Ericsson, IBM, Intel, Toshiba, and Nokia, and later joined by many other companies.

Bluetooth 1.0 and 1.0B
Versions 1.0 and 1.0B had many problems, and manufacturers had difficulty making their products interoperable. Versions 1.0 and 1.0B also included mandatory Bluetooth hardware device address (BD_ADDR) transmission in the
Connecting process (rendering anonymity impossible at the protocol level), which was a major setback for certain services planned for use in Bluetooth environments.

Bluetooth 1.1
Ratified as
IEEE Standard 802.15.1-2002.
Many errors found in the 1.0B specifications were fixed.
Added support for non-encrypted channels.
Received Signal Strength Indicator (
RSSI).

Bluetooth 1.2
This version is
backward compatible with 1.1 and the major enhancements include the following:
Faster Connection and Discovery
Adaptive
frequency-hopping spread spectrum (AFH), which improves resistance to radio frequency interference by avoiding the use of crowded frequencies in the hopping sequence.
Higher transmission speeds in practice, up to 721 kbit/s, than in 1.1.
Extended Synchronous Connections (eSCO), which improve voice quality of audio links by allowing retransmissions of corrupted packets, and may optionally increase audio latency to provide better support for concurrent data transfer.
Host Controller Interface (HCI) support for three-wire UART.
Ratified as
IEEE Standard 802.15.1-2005.
Introduced Flow Control and Retransmission Modes for L2CAP.

Bluetooth 2.0
This version of the Bluetooth specification was released on November 10, 2004. It is backward compatible with the previous version 1.2. The main difference is the introduction of an Enhanced Data Rate (EDR) for
faster data transfer. The nominal rate of EDR is about 3 megabits per second, although the practical data transfer rate is 2.1 megabits per second.[11] The additional throughput is obtained by using a different radio technology for transmission of the data. Standard, or Basic Rate, transmission uses Gaussian Frequency Shift Keying (GFSK) modulation of the radio signal with a gross air data rate of 1 Mbit/s. EDR uses a combination of GFSK and Phase Shift Keying modulation (PSK) with two variants, π/4-DQPSK and 8DPSK. These have gross air data rates of 2, and 3 Mbit/s respectively.
According to the 2.0 specification, EDR provides the following benefits:
Three times the transmission speed — up to 10 times[
citation needed] (2.1 Mbit/s) in some cases.
Reduced complexity of multiple simultaneous connections due to additional bandwidth.
Lower power consumption through a reduced
duty cycle.
The
Bluetooth Special Interest Group (SIG) published the specification as "Bluetooth 2.0 + EDR" which implies that EDR is an optional feature. Aside from EDR, there are other minor improvements to the 2.0 specification, and products may claim compliance to "Bluetooth 2.0" without supporting the higher data rate. At least one commercial device, the HTC TyTN Pocket PC phone, states "Bluetooth 2.0 without EDR" on its data sheet.

Bluetooth 2.1
Bluetooth Core Specification Version 2.1 is fully backward compatible with 1.2, and was adopted by the Bluetooth SIG on July 26, 2007. This specification includes the following features:
Extended inquiry response (EIR)
Provides more information during the inquiry procedure to allow better filtering of devices before connection. This information may include the name of the device, a list of services the device supports, the transmission power level used for inquiry responses, and manufacturer defined data.
Sniff subrating
Reduces the power consumption when devices are in the sniff low-power mode, especially on links with asymmetric data flows.
Human interface devices (HID) are expected to benefit the most, with mouse and keyboard devices increasing their battery life by a factor of 3 to 10.[citation needed] It lets devices decide how long they will wait before sending keepalive messages to one another. Previous Bluetooth implementations featured keep alive message frequencies of up to several times per second. In contrast, the 2.1 specification allows pairs of devices to negotiate this value between them to as infrequently as once every 5 or 10 seconds.
Encryption pause/resume (EPR)
Enables an encryption key to be changed with less management required by the Bluetooth host. Changing an encryption key must be done for a role switch of an encrypted an ACL link, or every 23.3 hours (one Bluetooth day) encryption is enabled on an ACL link. Before this feature was introduced, when an encryption key is refreshed the Bluetooth host would be notified of a brief gap in encryption while the new key was generated; so the Bluetooth host was required to handle pausing data transfer (however data requiring encryption may already have been sent before the notification that encryption is disabled has been received). With EPR, the Bluetooth host is not notified of the gap, and the Bluetooth controller ensures that no unencrypted data is transferred while they key is refreshed.
Secure simple pairing (SSP)
Radically improves the pairing experience for Bluetooth devices, while increasing the use and strength of security. It is expected that this feature will significantly increase the use of Bluetooth.
Near field communication (NFC) cooperation
Automatic creation of secure Bluetooth connections when NFC radio interface is also available. This functionality is part of SSP where NFC is one way of exchanging pairing information. For example, a headset should be paired with a Bluetooth 2.1 phone including NFC just by bringing the two devices close to each other (a few centimeters). Another example is automatic uploading of photos from a mobile phone or camera to a digital picture frame just by bringing the phone or camera close to the frame.

Bluetooth 3.0
The 3.0 specification was adopted by the
Bluetooth SIG on April 21st, 2009. Its main new feature is AMP (Alternate MAC/PHY), the addition of 802.11 as a high speed transport. Two technologies had been anticipated for AMP: 802.11 and UWB, but UWB is missing from the specification.
Alternate MAC/PHY

Enables the use of alternative MAC and PHYs for transporting Bluetooth profile data. The Bluetooth Radio is still used for device discovery, initial connection and profile configuration, however when lots of data needs to be sent, the high speed alternate MAC PHY (802.11, typically associated with Wi-Fi) will be used to transport the data. This means that the proven low power connection models of Bluetooth are used when the system is idle, and the low power per bit radios are used when lots of data needs to be sent.
Unicast connectionless data
Permits service data to be sent without establishing an explicit L2CAP channel. It is intended for use by applications that require low latency between user action and reconnection/transmission of data. This is only appropriate for small amounts of data.
Read encryption key size
Introduces a standard HCI command for a Bluetooth host to query the encryption key size on an encrypted ACL link. The encryption key size used on a link is required for the SIM Access Profile, so generally Bluetooth controllers provided this feature in a proprietary manner. Now the information is available over the standard HCI interface.

Bluetooth low energy
Main article:
Bluetooth low energy
On April 20, 2009, Bluetooth SIG presented the new Bluetooth low energy as an entirely additional protocol stack, compatible with other existing Bluetooth protocol stacks. The preceding naming as Wibree and Bluetooth ULP (Ultra Low Power) has been outdated by the final naming as Bluetooth low energy.
On June 12, 2007, Nokia and Bluetooth SIG had announced that
Wibree will be a part of the Bluetooth specification, as an ultra-low power Bluetooth technology. Expected use cases include watches displaying Caller ID information, sports sensors monitoring the wearer's heart rate during exercise, and medical devices. The Medical Devices Working Group is also creating a medical devices profile and associated protocols to enable this market. Bluetooth low energy technology is designed for devices to have a battery life of up to one year.

Future
Broadcast channel
Enables Bluetooth information points. This will drive the adoption of Bluetooth into mobile phones, and enable advertising models based around users pulling information from the information points, and not based around the object push model that is used in a limited way today.
Topology management
Enables the automatic configuration of the
piconet topologies especially in scatternet situations that are becoming more common today. This should all be invisible to users of the technology, while also making the technology "just work."
QoS improvements
Enable audio and video data to be transmitted at a higher quality, especially when best effort traffic is being transmitted in the same
piconet.

UWB for AMP
Main article:
ultra-wideband
The high speed (AMP) feature of Bluetooth 3.0 is based on 802.11, but the AMP mechanism was designed to be usable with other radios as well. It was originally intended for UWB, but the WiMedia Alliance, the body responsible for the flavor of UWB intended for Bluetooth, announced in March 2009 that it was disbanding.
On March 16, 2009, the
WiMedia Alliance announced it was entering into technology transfer agreements for the WiMedia Ultra-wideband (UWB) specifications. WiMedia will transfer all current and future specifications, including work on future high speed and power optimized implementations, to the Bluetooth Special Interest Group (SIG), Wireless USB Promoter Group and the USB Implementers Forum. After the successful completion of the technology transfer, marketing and related administrative items, the WiMedia Alliance will cease operations.[19]

Technical information

Bluetooth protocol stack
Main articles:
Bluetooth stack and Bluetooth protocols
"Bluetooth is defined as a layer protocol architecture consisting of core protocols, cable replacement protocols, telephony control protocols, and adopted protocols."[20] Mandatory protocols for all Bluetooth stacks are: LMP, L2CAP and SDP. Additionally, these protocols are almost universally supported: HCI and RFCOMM.

LMP (Link Management Protocol)
Used for control of the radio link between two devices. Implemented on the controller.

L2CAP (Logical Link Control & Adaptation Protocol)
Used to multiplex multiple logical connections between two devices using different higher level protocols. Provides segmentation and reassembly of on-air packets.
In Basic mode, L2CAP provides packets with a payload configurable up to 64kB, with 672 bytes as the default MTU, and 48 bytes as the minimum mandatory supported MTU.
In Retransmission & Flow Control modes, L2CAP can be configured for reliable or isochronous data per channel by performing retransmissions and CRC checks.
Bluetooth Core Specification Addendum 1 adds two additional L2CAP modes to the core specification. These modes effectively deprecate original Retransmission and Flow Control modes:
Enhanced Retransmission Mode (ERTM): This mode is an improved version of the original retransmission mode. This mode provides a reliable L2CAP channel.
Streaming Mode (SM): This is a very simple mode, with no retransmission or flow control. This mode provides an unreliable L2CAP channel.
Reliability in any of these modes is optionally and/or additionally guaranteed by the lower layer Bluetooth BDR/EDR air interface by configuring the number of retransmissions and flush timeout (time after which the radio will flush packets). In-order sequencing is guaranteed by the lower layer.
Only L2CAP channels configured in ERTM or SM may be operated over AMP logical links.

SDP (Service Discovery Protocol)
Used to allow devices to discover what services each other support, and what parameters to use to connect to them. For example, when connecting a mobile phone to a Bluetooth headset, SDP will be used to determine which
Bluetooth profiles are supported by the headset (Headset Profile, Hands Free Profile, Advanced Audio Distribution Profile etc) and the protocol multiplexer settings needed to connect to each of them. Each service is identified by a Universally Unique Identifier (UUID), with official services (Bluetooth profiles) assigned a short form UUID (16 bits rather than the full 128)

HCI (Host/Controller Interface)
Standardised communication between the host stack (e.g., a PC or mobile phone OS) and the controller (the Bluetooth IC). This standard allows the host stack or controller IC to be swapped with minimal adaptation.
There are several HCI transport layer standards, each using a different hardware interface to transfer the same command, event and data packets. The most commonly used are
USB (in PCs) and UART (in mobile phones and PDAs).
In Bluetooth devices with simple functionality (e.g., headsets) the host stack and controller can be implemented on the same microprocessor. In this case the HCI is optional, although often implemented as an internal software interface.

RFCOMM (Cable replacement protocol)
Radio frequency communications (RFCOMM) is the cable replacement protocol used to create a virtual serial data stream. RFCOMM provides for binary data transport and emulates
EIA-232 (formerly RS-232) control signals over the Bluetooth baseband layer.
RFCOMM provides a simple reliable data stream to the user, similar to TCP. It is used directly by many telephony related profiles as a carrier for AT commands, as well as being a transport layer for OBEX over Bluetooth.
Many Bluetooth applications use RFCOMM because of its widespread support and publicly available API on most operating systems. Additionally, applications that used a serial port to communicate can be quickly ported to use RFCOMM.

BNEP (Bluetooth Network Encapsulation Protocol)
BNEP is used to transfer another protocol stack's data via an L2CAP channel. Its main purpose is the transmission of IP packets in the Personal Area Networking Profile. BNEP performs a similar function to
SNAP in Wireless LAN.

AVCTP (Audio/Visual Control Transport Protocol)
Used by the remote control profile to transfer AV/C commands over an L2CAP channel. The music control buttons on a stereo headset use this protocol to control the music player

AVDTP (Audio/Visual Data Transport Protocol)
Used by the advanced audio distribution profile to stream music to stereo headsets over an L2CAP channel. Intended to be used by video distribution profile.

Telephone control protocol
Telephony control protocol-binary (TCS BIN) is the bit-oriented protocol that defines the call control signaling for the establishment of voice and data calls between Bluetooth devices. Additionally, "TCS BIN defines mobility management procedures for handling groups of Bluetooth TCS devices."
TCS-BIN is only used by the cordless telephony profile, which failed to attract implementers. As such it is only of historical interest.

Adopted protocols
Adopted protocols are defined by other standards-making organizations and incorporated into Bluetooth’s protocol stack, allowing Bluetooth to create protocols only when necessary. The adopted protocols include:
Point-to-Point Protocol (PPP)
Internet standard protocol for transporting IP datagrams over a point-to-point link
TCP/IP/UDP
Foundation Protocols for TCP/IP protocol suite
Object Exchange Protocol (OBEX)
Session-layer protocol for the exchange of objects, providing a model for object and operation representation
Wireless Application Environment/Wireless Application Protocol (WAE/WAP)
WAE specifies an application framework for wireless devices and WAP is an open standard to provide mobile users access to telephony and information services.
[20]

Communication and connection
A master Bluetooth device can communicate with up to seven devices in a
Wireless User Group. This network group of up to eight devices is called a piconet.
A piconet is an ad-hoc computer network, using Bluetooth technology protocols to allow one master device to interconnect with up to seven active devices. Up to 255 further devices can be inactive, or parked, which the master device can bring into active status at any time.
At any given time, data can be transferred between the master and one other device, however, the devices can switch roles and the slave can become the master at any time. The master switches rapidly from one device to another in a
round-robin fashion. (Simultaneous transmission from the master to multiple other devices is possible, but not used much.)
The Bluetooth specification allows connecting two or more piconets together to form a
scatternet, with some devices acting as a bridge by simultaneously playing the master role in one piconet and the slave role in another.
Many USB Bluetooth
adapters are available, some of which also include an IrDA adapter. Older (pre-2003) Bluetooth adapters, however, have limited services, offering only the Bluetooth Enumerator and a less-powerful Bluetooth Radio incarnation. Such devices can link computers with Bluetooth, but they do not offer much in the way of services that modern adapters do.

Baseband Error Correction
Three types of
error correction are implemented in Bluetooth systems,
1/3 rate
forward error correction (FEC)
2/3 rate FEC
Automatic repeat-request (ARQ)

Setting up connections
Any Bluetooth device will transmit the following information on demand:
Device name.
Device class.
List of services.
Technical information, for example, device features, manufacturer, Bluetooth specification used, clock offset.
Any device may perform an inquiry to find other devices to connect to, and any device can be configured to respond to such inquiries. However, if the device trying to connect knows the address of the device, it always responds to direct connection requests and transmits the information shown in the list above if requested. Use of a device's services may require pairing or acceptance by its owner, but the connection itself can be initiated by any device and held until it goes out of range. Some devices can be connected to only one device at a time, and connecting to them prevents them from connecting to other devices and appearing in inquiries until they disconnect from the other device.
Every device has a unique 48-bit address. However these addresses are generally not shown in inquiries. Instead, friendly Bluetooth names are used, which can be set by the user. This name appears when another user scans for devices and in lists of paired devices.
Most phones have the Bluetooth name set to the manufacturer and model of the phone by default. Most phones and laptops show only the Bluetooth names and special programs are required to get additional information about remote devices. This can be confusing as, for example, there could be several phones in range named
T610 (see Bluejacking).

Pairing
Pairs of devices may establish a relationship by creating a
shared secret known as a link key, this process is known as pairing. If a link key is stored by both devices they are said to be bonded. A device that wants to communicate only with a bonded device can cryptographically authenticate the identity of the other device, and so be sure that it is the same device it previously paired with. Once a link key has been generated, an authenticated ACL link between the devices may be encrypted so that the data that they exchange over the airwaves is protected against eavesdropping. Link keys can be deleted at any time by either device, if done by either device this will implicitly remove the bonding between the devices; so it is possible one of the device to have a link key stored but not be aware that it is no longer bonded to the device associated with the given link key.
Bluetooth services generally require either encryption or authentication, as such require pairing before they allow a remote device to use the given service. Some services, such as the Object Push Profile, elect not to explicitly require authentication or encryption so that pairing does not interfere with the user experience associated with the service use-cases.
Pairing mechanisms have changed significantly with the introduction of Secure Simple Pairing in Bluetooth 2.1. The following summarizes the pairing mechanisms:
Legacy pairing: This is the only method available before Bluetooth 2.1. Each device must enter a PIN code, pairing is only successful if both devices enter the same PIN code. Any 16-digit ACSII string may be used as a PIN code, however not all devices may be capable of entering all possible PIN codes.
Limited input devices: The obvious example of this class of device is a Bluetooth Hands-free headset, which generally have few inputs. These devices usually have a fixed PIN, for example "0000" or "1234", that are hard-coded into the device.
Numeric input devices: Mobile phones are classic examples of these devices. They allow a user to enter a numeric value up to 16 digits in length.
Alpha-numeric input devices: PCs and smartphones are examples of these devices. They allow a user to enter full ASCII text as a PIN code. If pairing with a less capable device the user needs to be aware of the input limitations on the other device, there is no mechanism available for a capable device to determine how it should limit the available input a user may use.
Secure Simple Pairing: This is required by Bluetooth 2.1. A Bluetooth 2.1 device may only use legacy pairing to interoperable with a 2.0 or older device. Secure Simple Pairing uses a type of
public key cryptography, and has the following modes of operation:
Just works: As implied by the name, this method just works. No user interaction is required; however, a device may prompt the user to confirm the pairing process. This method is typically used by headsets with very limited IO capabilities, and is more secure than the fixed PIN mechanism which is typical for this set of limited devices. This method provides no
man in the middle (MITM) protection.
Numeric comparison: If both devices have a display and at least one can accept a binary Yes/No user input, they may use Numeric Comparison. This method displays a 6-digit numeric code on each device. The user should compare the numbers to ensure they are identical. If the comparison succeeds, the user(s) should confirm pairing on the device(s) that can accept an input. This method provides MITM protection, assuming the user confirms on both devices and actually performs the comparison properly.
Passkey Entry: This method may be used between a device with a display and a device with numeric keypad entry (such as a keyboard), or two devices with numeric keypad entry. In the first case, the display is used to show a 6-digit numeric code to the user, who then enters the code on the keypad. In the second case, the user of each device enters the same 6-digit number. Both cases provide MITM protection.
Out of band (OOB): This method uses an external means of communication (such as NFC) to exchange some information used in the pairing process. Pairing is completed using the Bluetooth radio, but requires information from the OOB mechanism. This provides only the level of MITM protection that is present in the OOB mechanism.
SSP is considered simple for the following reasons:
In most cases, it does not require a user to generate a passkey.
For use-cases not requiring MITM, user interaction has been eliminated.
For numeric comparison, MITM protection can be achieved with a simple equality comparison by the user.
Using OOB with NFC will enable pairing when devices simply get close, rather than requiring a lengthy discovery process.

Security Concerns
Prior to Bluetooth 2.1, encryption is not required and can be turned off at any time. Moreover, the encryption key is only good for approximately 23.5 hours; using a single encryption key longer than this time allows simple
XOR attacks to retrieve the encryption key.
Turning off encryption is required for several normal operations, so it is problematic to detect if encryption is disabled for a valid reason or for a security attack.
Bluetooth 2.1 addresses this in the following ways:
Encryption is required for all non SDP (Service Discovery Protocol) connections
A new Encryption Pause and Resume feature is used for all normal operations requiring encryption to be disabled. This enables easy identification of normal operation from security attacks.
The encryption key is required to be refreshed before it expires.
Link keys may be stored on the device file system, not on the Bluetooth chip itself. Many Bluetooth chip manufacturers allow link keys to be stored on the device; however, if the device is removable this means that the link key will move with the device.

Air interface
The
protocol operates in the license-free ISM band at 2.4-2.4835 GHz. To avoid interfering with other protocols that use the 2.45 GHz band, the Bluetooth protocol divides the band into 79 channels (each 1 MHz wide) and changes channels up to 1600 times per second. Implementations with versions 1.1 and 1.2 reach speeds of 723.1 kbit/s. Version 2.0 implementations feature Bluetooth Enhanced Data Rate (EDR) and reach 2.1 Mbit/s. Technically, version 2.0 devices have a higher power consumption, but the three times faster rate reduces the transmission times, effectively reducing power consumption to half that of 1.x devices (assuming equal traffic load).

Security

Overview
Bluetooth implements
confidentiality, authentication and key derivation with custom algorithms based on the SAFER+ block cipher. In Bluetooth, key generation is generally based on a Bluetooth PIN, which must be entered into both devices. This procedure might be modified if one of the devices has a fixed PIN (e.g., for headsets or similar devices with a restricted user interface). During pairing, an initialization key or master key is generated, using the E22 algorithm.[21] The E0 stream cipher is used for encrypting packets, granting confidentiality and is based on a shared cryptographic secret, namely a previously generated link key or master key. Those keys, used for subsequent encryption of data sent via the air interface, rely on the Bluetooth PIN, which has been entered into one or both devices.
An overview of Bluetooth vulnerabilities exploits has been published by Andreas Becker. In September 2008, the National Institute of Standards and Technology (NIST) published a Guide to Bluetooth Security that will serve as reference to organization on the security capabilities of Bluetooth and steps for securing Bluetooth technologies effectively. While Bluetooth has its benefits, it is susceptible to denial of service attacks, eavesdropping, man-in-the-middle attacks, message modification, and resource misappropriation. Users/organizations must evaluate their acceptable level of risk and incorporate security into the lifecycle of Bluetooth devices. To help mitigate risks, included in the NIST document are security checklists with guidelines and recommendations for creating and maintaining secure Bluetooth piconets, headsets, and smart card readers.

Bluejacking
Bluejacking is the sending of either a picture or a message from one user to an unsuspecting user through Bluetooth wireless technology. Common applications include short messages (e.g., "You’ve just been bluejacked!"). Bluejacking does not involve the removal or alteration of any data from the device.

History of security concerns

2001
In 2001, Jakobsson and Wetzel from Bell Laboratories discovered flaws in the pairing protocol of Bluetooth, and also pointed to vulnerabilities in the encryption scheme.

2003
In November 2003, Ben and Adam Laurie from A.L. Digital Ltd. discovered that serious flaws in Bluetooth security may lead to disclosure of personal data. It should be noted, however, that the reported security problems concerned some poor implementations of Bluetooth, rather than the protocol itself.
In a subsequent experiment, Martin Herfurt from the trifinite.group was able to do a field-trial at the
CeBIT fairgrounds, showing the importance of the problem to the world. A new attack called BlueBug was used for this experiment. This is one of a number of concerns that have been raised over the security of Bluetooth communications.

2004
In 2004 the first purported
virus using Bluetooth to spread itself among mobile phones appeared on the Symbian OS. The virus was first described by Kaspersky Lab and requires users to confirm the installation of unknown software before it can propagate. The virus was written as a proof-of-concept by a group of virus writers known as "29A" and sent to anti-virus groups. Thus, it should be regarded as a potential (but not real) security threat to Bluetooth or Symbian OS since the virus has never spread outside of this system.
In August 2004, a world-record-setting experiment (see also
Bluetooth sniping) showed that the range of Class 2 Bluetooth radios could be extended to 1.78 km (1.08 mile) with directional antennas and signal amplifiers. This poses a potential security threat because it enables attackers to access vulnerable Bluetooth-devices from a distance beyond expectation. The attacker must also be able to receive information from the victim to set up a connection. No attack can be made against a Bluetooth device unless the attacker knows its Bluetooth address and which channels to transmit on.

2005
In January 2005, a mobile malware worm known as Lasco.A began targeting mobile phones using Symbian OS (Series 60 platform) using Bluetooth-enabled devices to replicate itself and spread to other devices. The worm is self-installing and begins once the mobile user approves the transfer of the file (velasco.sis ) from another device. Once installed, the worm begins looking for other Bluetooth-enabled devices to infect. Additionally, the worm infects other .SIS files on the device, allowing replication to another device through use of removable media (Secure Digital, Compact Flash, etc.). The worm can render the mobile device unstable.
In April 2005,
Cambridge University security researchers published results of their actual implementation of passive attacks against the PIN-based pairing between commercial Bluetooth devices, confirming the attacks to be practicably fast and the Bluetooth symmetric key establishment method to be vulnerable. To rectify this vulnerability, they carried out an implementation which showed that stronger, asymmetric key establishment is feasible for certain classes of devices, such as mobile phones.
In June 2005,
Yaniv Shaked and Avishai Wool published a paper describing both passive and active methods for obtaining the PIN for a Bluetooth link. The passive attack allows a suitably equipped attacker to eavesdrop on communications and spoof, if the attacker was present at the time of initial pairing. The active method makes use of a specially constructed message that must be inserted at a specific point in the protocol, to make the master and slave repeat the pairing process. After that, the first method can be used to crack the PIN. This attack's major weakness is that it requires the user of the devices under attack to re-enter the PIN during the attack when the device prompts them to. Also, this active attack probably requires custom hardware, since most commercially available Bluetooth devices are not capable of the timing necessary.
In August 2005, police in
Cambridgeshire, England, issued warnings about thieves using Bluetooth-enabled phones to track other devices left in cars. Police are advising users to ensure that any mobile networking connections are de-activated if laptops and other devices are left in this way.

2006
In April 2006, researchers from
Secure Network and F-Secure published a report that warns of the large number of devices left in a visible state, and issued statistics on the spread of various Bluetooth services and the ease of spread of an eventual Bluetooth worm.[34]

2007
In October 2007, at the Luxemburgish Hack.lu Security Conference, Kevin Finistere and Thierry Zoller demonstrated and released a remote root shell via Bluetooth on Mac OS X v10.3.9 and v10.4. They also demonstrated the first Bluetooth PIN and Linkkeys cracker, which is based on the research of Wool and Shaked.

Health concerns
Main article:
Wireless electronic devices and health
Bluetooth uses the microwave radio frequency spectrum in the 2.4 GHz to 2.4835 GHz range. Maximum power output from a Bluetooth radio is 100 mW, 2.5 mW, and 1 mW for Class 1, Class 2, and Class 3 devices respectively, which puts Class 1 at roughly the same level as mobile phones, and the other two classes much lower. Accordingly, Class 2 and Class 3 Bluetooth devices are considered less of a potential hazard than mobile phones, and Class 1 may be comparable to that of mobile phones.